Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Am J Physiol Endocrinol Metab ; 320(3): E453-E466, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427050

RESUMO

Progesterone acts directly on vascular smooth muscle cells (VSMCs) through activation of membrane progesterone receptor α (mPRα)-dependent signaling to rapidly decrease cytosolic Ca2+ concentrations and induce muscle relaxation. However, it is not known whether this progesterone action involves uptake of Ca2+ by the sarco/endoplasmic reticulum (SR) and increased sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity. The present results show that treatment of cultured human VSMCs with progesterone and the selective mPR agonist Org OD-02-0 (OD 02-0) but not with the nuclear PR agonist R5020 increased SERCA protein expression, which was blocked by knockdown of mPRα with siRNA. Moreover, treatments with progesterone and OD 02-0, but not with R5020, increased phospholamban (PLB) phosphorylation, which would result in disinhibition of SERCA function. Progesterone and OD 02-0 significantly increased Ca2+ levels in the SR and caused VSMC relaxation. These effects were blocked by pretreatment with cyclopiazonic acid (CPA), a SERCA inhibitor, and by knockdown of SERCA2 with siRNA, suggesting that SERCA2 plays a critical role in progesterone induction of VSMC relaxation. Treatment with inhibitors of inhibitory G proteins (Gi, NF023), MAP kinase (AZD 6244), Akt/Pi3k (wortmannin), and a Rho activator (calpeptin) blocked the progesterone- and OD 02-0-induced increase in Ca2+ levels in the SR and SERCA expressions. These results suggest that the rapid effects of progesterone on cytosolic Ca2+ levels and relaxation of VSMCs through mPRα involve regulation of the functions of SERCA2 and PLB through Gi, MAP kinase, and Akt signaling pathways and downregulation of RhoA activity.NEW & NOTEWORTHY The rapid effects of progesterone on cytosolic Ca2+ levels and relaxation of VSMCs through mPRα involve regulation of the functions of SERCA2 and PLB through Gi, MAP kinase, and Akt signaling pathways and downregulation of RhoA activity.


Assuntos
Relaxamento Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Progesterona/farmacologia , Receptores de Progesterona/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Relaxamento Muscular/genética , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Artérias Umbilicais/citologia , Artérias Umbilicais/efeitos dos fármacos , Artérias Umbilicais/metabolismo
2.
J Mol Cell Cardiol ; 136: 42-52, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31505197

RESUMO

The C-terminal end segment of troponin subunit I (TnI) is a structure highly conserved among the three muscle type-specific isoforms and across vertebrate species. Partial deletion or point mutation in this segment impairs cardiac muscle relaxation. In the present study, we characterized the C-terminal 27 amino acid peptide of human cardiac TnI (HcTnI-C27) for its role in modulating muscle contractility. Biologically or chemically synthesized HcTnI-C27 peptide retains an epitope structure in physiological solutions similarly to that in intact TnI as recognized by an anti-TnI C-terminus monoclonal antibody (mAb TnI-1). Protein binding studies found that HcTnI-C27 retains the binding affinity for tropomyosin as previously shown with intact cardiac TnI. A restrictive cardiomyopathy mutation R192H in this segment abolishes the bindings to mAb TnI-1 and tropomyosin, demonstrating a pathogenic loss of function. Contractility studies using skinned muscle preparations demonstrated that addition of HcTnI-C27 peptide reduces the Ca2+-sensitivity of myofibrils without decreasing maximum force production. The results indicate that the C-terminal end segment of TnI is a regulatory element of troponin, which retains the native configuration in the form of free peptide to confer an effect on myofilament Ca2+-desensitization. Without negative inotropic impact, this short peptide may be developed into a novel reagent to selectively facilitate cardiac muscle relaxation at the activated state as a potential treatment for heart failure.


Assuntos
Cálcio/metabolismo , Miofibrilas/metabolismo , Troponina I/química , Troponina I/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Epitopos/química , Evolução Molecular , Ventrículos do Coração/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Relaxamento Muscular/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Ratos , Tropomiosina/metabolismo , Troponina I/genética , Troponina I/imunologia
3.
Free Radic Biol Med ; 135: 132-143, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30831189

RESUMO

Diabetic gastroparesis (GP) is a clinical syndrome characterized by delayed gastric emptying (DGE). Loss of Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) led to reduced nNOSα mediated gastric motility and DGE. The molecular signaling of cinnamaldehyde (CNM) mediated Nrf2 activation and its mechanistic role on DGE were further investigated in obese/T2D female mice. Adult female homozygous Nfe2l2-/- (C57BL/6J) and their wild-type (WT) littermates (Nfe2l2+/+) mice were fed with high fat diet (HFD; Obese/T2D model), or normal diet (ND) with or without CNM (50 mg/kg b.w; i.p). Supplementation of CNM attenuated (p < 0.05) DGE in WT female but not in Nrf2 KO Obese/T2D mice. CNM (1) normalized serum estradiol-17ß levels, (2) induced gastric Nrf2 and phase II antioxidant enzymes through extracellular signal-regulated kinase, (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK), (3) reduced glucose synthase kinase 3 beta (GSK3ß) and aryl hydrocarbon receptor (AhR) and this was associated with (4) increased estrogen receptor expression, BH4 (Cofactor of nNOS) biosynthesis enzyme GCH-1 and nNOSα dimerization in WT Obese/T2 diabetic female mice. In addition, CNM restored impaired nitrergic relaxation in hyperglycemic conditions. These findings emphasize the importance of Nrf2 in maintaining nNOSα mediated GE and may have a translational relevance to treat obese/diabetic gastroparesis in women.


Assuntos
Acroleína/análogos & derivados , Complicações do Diabetes/genética , Gastroparesia/genética , Fator 2 Relacionado a NF-E2/genética , Obesidade/genética , Acroleína/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Esvaziamento Gástrico/efeitos dos fármacos , Esvaziamento Gástrico/genética , Gastroparesia/tratamento farmacológico , Gastroparesia/etiologia , Gastroparesia/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Estômago/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
4.
J Gen Physiol ; 151(1): 18-29, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30578328

RESUMO

Hypertrophic cardiomyopathy (HCM) is a genetic form of left ventricular hypertrophy, primarily caused by mutations in sarcomere proteins. The cardiac remodeling that occurs as the disease develops can mask the pathogenic impact of the mutation. Here, to discriminate between mutation-induced and disease-related changes in myofilament function, we investigate the pathogenic mechanisms underlying HCM in a patient carrying a homozygous mutation (K280N) in the cardiac troponin T gene (TNNT2), which results in 100% mutant cardiac troponin T. We examine sarcomere mechanics and energetics in K280N-isolated myofibrils and demembranated muscle strips, before and after replacement of the endogenous troponin. We also compare these data to those of control preparations from donor hearts, aortic stenosis patients (LVHao), and HCM patients negative for sarcomeric protein mutations (HCMsmn). The rate constant of tension generation following maximal Ca2+ activation (k ACT) and the rate constant of isometric relaxation (slow k REL) are markedly faster in K280N myofibrils than in all control groups. Simultaneous measurements of maximal isometric ATPase activity and Ca2+-activated tension in demembranated muscle strips also demonstrate that the energy cost of tension generation is higher in the K280N than in all controls. Replacement of mutant protein by exchange with wild-type troponin in the K280N preparations reduces k ACT, slow k REL, and tension cost close to control values. In donor myofibrils and HCMsmn demembranated strips, replacement of endogenous troponin with troponin containing the K280N mutant increases k ACT, slow k REL, and tension cost. The K280N TNNT2 mutation directly alters the apparent cross-bridge kinetics and impairs sarcomere energetics. This result supports the hypothesis that inefficient ATP utilization by myofilaments plays a central role in the pathogenesis of the disease.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Mutação/genética , Troponina T/genética , Adulto , Cálcio/metabolismo , Humanos , Cinética , Masculino , Relaxamento Muscular/genética , Miofibrilas/genética , Sarcômeros/genética
5.
Mol Med Rep ; 16(4): 5015-5022, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28765908

RESUMO

The present study aimed to investigate the effects of acute sepsis on diaphragm contractility and relaxation, via examining the Ca2+­uptake function of sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA), and the protein levels of SERCA1, SERCA2 and the ryanodine receptor (RyR) of the sarcoplasmic reticulum (SR). A sepsis rat model was established through cecal ligation and puncture (CLP). A total of 6 and 12 h following CLP, the isometric contractile and relaxation parameters of the diaphragm were measured. In addition, Ca2+ uptake and release from the SR, and the protein expression levels of SERCA1, SERCA2 and RyR in diaphragm muscle tissue were investigated. At 6 and 12 h post­CLP, the diaphragm half­relaxation time was prolonged and the maximum rate of tension decline was decreased and the Ca2+­uptake function of SERCA was markedly reduced. The maximum rate of twitch force development, the maximal twitch and tetanic tension, and the release function of SR were decreased at 12 h post­CLP. A total of 12 h following CLP, the protein expression levels of SERCA1 were significantly downregulated, and its activity was significantly reduced; conversely, the protein levels of SERCA2 remained unaltered. The present findings indicated that at the acute stage of sepsis induced by CLP the contractile and relaxation functions of the diaphragm were significantly compromised. The impairments in relaxation may be a result of the impaired uptake function of the SR and the downregulation in SERCA1 protein expression. Conversely, the compromised contractility may be a result of the impaired release function of the SR and the downregulation in RyR protein levels. This could provide some new insights into the treatment of sepsis. In acute stages of sepsis, the improvement of SERCA function could reduce the disequilibrium of calcium homeostasis to improve the critical illness myopathy and respiratory failure.


Assuntos
Diafragma/metabolismo , Relaxamento Muscular/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sepse/etiologia , Sepse/metabolismo , Doença Aguda , Animais , Biomarcadores , Cálcio/metabolismo , Diafragma/fisiopatologia , Modelos Animais de Doenças , Masculino , Contração Muscular/genética , Ratos , Retículo Sarcoplasmático/metabolismo , Sepse/fisiopatologia
6.
PLoS One ; 12(6): e0180064, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28658286

RESUMO

The "super-relaxed state" (SRX) of myosin represents a 'reserve' of motors in the heart. Myosin heads in the SRX are bound to the thick filament and have a very low ATPase rate. Changes in the SRX are likely to modulate cardiac contractility. We previously demonstrated that the SRX is significantly reduced in mouse cardiomyocytes lacking cardiac myosin binding protein-C (cMyBP-C). Here, we report the effect of mutations in the cMyBP-C gene (MYBPC3) using samples from human patients with hypertrophic cardiomyopathy (HCM). Left ventricular (LV) samples from 11 HCM patients were obtained following myectomy surgery to relieve LV outflow tract obstruction. HCM samples were genotyped as either MYBPC3 mutation positive (MYBPC3mut) or negative (HCMsmn) and were compared to eight non-failing donor hearts. Compared to donors, only MYBPC3mut samples display a significantly diminished SRX, characterised by a decrease in both the number of myosin heads in the SRX and the lifetime of ATP turnover. These changes were not observed in HCMsmn samples. There was a positive correlation (p < 0.01) between the expression of cMyBP-C and the proportion of myosin heads in the SRX state, suggesting cMyBP-C modulates and maintains the SRX. Phosphorylation of the myosin regulatory light chain in MYBPC3mut samples was significantly decreased compared to the other groups, suggesting a potential mechanism to compensate for the diminished SRX. We conclude that by altering both contractility and sarcomeric energy requirements, a reduced SRX may be an important disease mechanism in patients with MYBPC3 mutations.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Adolescente , Adulto , Proteínas de Transporte/fisiologia , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Relaxamento Muscular/genética , Relaxamento Muscular/fisiologia , Mutação/genética , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Miosinas/metabolismo , Miosinas/fisiologia , Adulto Jovem
7.
J Clin Invest ; 127(2): 549-563, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28067669

RESUMO

Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Complexos Multiproteicos/antagonistas & inibidores , Fibras Musculares Esqueléticas/enzimologia , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/enzimologia , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Adulto , Aminoimidazol Carboxamida/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Mutantes , Pessoa de Meia-Idade , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/genética , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Transdução de Sinais/genética , Sirolimo/farmacocinética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
J Smooth Muscle Res ; 52(0): 45-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375035

RESUMO

The regulation of smooth muscle contraction and relaxation involves phosphorylation and dephosphorylation of regulatory proteins, particularly myosin. To elucidate the regulatory mechanisms, analyzing the phosphorylation signal transduction is crucial. Although a pharmacological approach with selective inhibitors is sensitive and a useful technique, it leads to speculation regarding a signaling pathway but does not provide direct evidence of changes at a molecular level. We developed a highly sensitive biochemical technique to analyze phosphorylation by adapting Phos-tag SDS-PAGE. With this technique, we successfully analyzed myosin light chain (LC20) phosphorylation in tiny renal afferent arterioles. In the rat afferent arterioles, endothelin-1 (ET-1) induced diphosphorylation of LC20 at Ser19 and Thr18 as well as monophosphorylation at Ser19 via ET B receptor activation. Considering that LC20 diphosphorylation can decrease the rate of dephosphorylation and thus relaxation, we concluded that LC20 diphosphorylation contributes, at least in part, to the prolonged contraction induced by ET-1 in the renal afferent arteriole.


Assuntos
Rim/irrigação sanguínea , Cadeias Leves de Miosina/metabolismo , Miosinas/metabolismo , Artéria Renal/metabolismo , Arteríolas/metabolismo , Eletroforese em Gel de Poliacrilamida , Endotelina-1/fisiologia , Contração Muscular/genética , Relaxamento Muscular/genética , Músculo Liso Vascular/fisiologia , Fosforilação , Receptor de Endotelina B/metabolismo , Transdução de Sinais/fisiologia
9.
J Biomed Sci ; 23(1): 51, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27353642

RESUMO

BACKGROUND: Diastolic dysfunction refers to an impaired relaxation and an abnormality in a heart's filling during diastole while left ventricular systolic function is preserved. Diastolic dysfunction is commonly observed in patients with primary hypertension, diabetes and cardiomyopathies such as hypertrophic cardiomyopathy or restrictive cardiomyopathy. We have generated a restrictive cardiomyopathy (RCM) mouse model with troponin mutations in the heart to mimic the human RCM patients carrying the same mutations. RESULTS: In the present study, we have investigated the ventricular muscle internal dynamics and pressure developed during systole and diastole by inserting a micro-catheter into the left ventricle of the RCM mice with or without treatment of desensitizer green tea extracts catechins. Our results demonstrate that green tea catechin is able to correct diastolic dysfunction in RCM mainly by improving ventricular compliance and reducing the internal muscle rigidity caused by myofibril hypersensitivity to Ca(2+). CONCLUSION: Green tea extract catechin is effective in correcting diastolic dysfunction and improving ventricular muscle intrinsic compliance in RCM caused by troponin mutations.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Miocárdio/metabolismo , Extratos Vegetais/farmacologia , Chá/química , Animais , Sinalização do Cálcio/genética , Camundongos , Camundongos Transgênicos , Relaxamento Muscular/genética , Miofibrilas/metabolismo , Extratos Vegetais/química
10.
Biomed Res Int ; 2013: 125492, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24369527

RESUMO

We recently reported a novel form of BMP2, designated nBMP2, which is translated from an alternative downstream start codon and is localized to the nucleus rather than secreted from the cell. To examine the function of nBMP2 in the nucleus, we engineered a gene-targeted mutant mouse model (nBmp2NLS(tm)) in which nBMP2 cannot be translocated to the nucleus. Immunohistochemistry demonstrated the presence of nBMP2 staining in the myonuclei of wild type but not mutant skeletal muscle. The nBmp2NLS(tm) mouse exhibits altered function of skeletal muscle as demonstrated by a significant increase in the time required for relaxation following a stimulated twitch contraction. Force frequency analysis showed elevated force production in mutant muscles compared to controls from 10 to 60 Hz stimulation frequency, consistent with the mutant muscle's reduced ability to relax between rapidly stimulated contractions. Muscle relaxation after contraction is mediated by the active transport of Ca(2+) from the cytoplasm to the sarcoplasmic reticulum by sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA), and enzyme activity assays revealed that SERCA activity in skeletal muscle from nBmp2NLS(tm) mice was reduced to approximately 80% of wild type. These results suggest that nBMP2 plays a role in the establishment or maintenance of intracellular Ca(2+) transport pathways in skeletal muscle.


Assuntos
Proteína Morfogenética Óssea 2/genética , Sinalização do Cálcio/genética , Relaxamento Muscular/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Cálcio/metabolismo , Camundongos , Músculo Esquelético/fisiologia , Mutação , Retículo Sarcoplasmático/metabolismo
11.
J Pharmacol Sci ; 123(3): 235-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24162024

RESUMO

The Na⁺/Ca²âº exchanger (NCX) is a plasma membrane transporter involved in regulating intracellular Ca²âº concentrations. NCX is critical for Ca²âº regulation in cardiac muscle, vascular smooth muscle, and nerve fibers. To determine the role of NCX1 and NCX2 in gastrointestinal tissues, we examined electric field stimulation (EFS)-induced responses in the longitudinal smooth muscle of the distal colon in NCX1 and NCX2 double-heterozygote knockoutmice (Double HET). We found that the amplitudes of EFS-induced relaxation that persisted during EFS were greater in Double HET than in wild-type mice (WT). Under the non-adrenergic, non-cholinergic (NANC) condition, EFS-induced relaxation in Double HET was similar in amplitude to that of WT. In the experiments in which l-NNA was added under NANC conditions following the EFS, the magnitudes of EFS-induced relaxation were smaller in Double HET than those in WT. In addition, an NCX inhibitor, SN-6, enhanced EFS-induced relaxation but did not affect EFS-induced relaxation under NANC condition, as in Double HET. Moreover, the magnitudes of relaxation induced by NOR-1, which generates NO, were greater in Double HET compared with WT. Similarly, SN-6 potentiated the magnitudes of NOR-1-induced relaxation. In this study, we demonstrate that NCX regulate colonic motility by altering the sensitivity of the inhibitory component.


Assuntos
Cálcio/metabolismo , Colo/fisiologia , Motilidade Gastrointestinal/genética , Heterozigoto , Relaxamento Muscular/genética , Músculo Liso/fisiologia , Óxido Nítrico/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/fisiologia , Animais , Benzoatos/farmacologia , Compostos de Benzil/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Estimulação Elétrica , Motilidade Gastrointestinal/fisiologia , Imidazóis/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Óxido Nítrico/fisiologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tiazolidinas/farmacologia
12.
J Physiol ; 591(6): 1489-506, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23339175

RESUMO

There is evidence that vasoactive intestinal polypeptide (VIP) participates in inhibitory neuromuscular transmission (NMT) in the internal anal sphincter (IAS). However, specific details concerning VIP-ergic NMT are limited, largely because of difficulties in selectively blocking other inhibitory neural pathways. The present study used the selective P2Y1 receptor antagonist MRS2500 (1 µm) and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine (l-NNA; 100 µm) to block purinergic and nitrergic NMT to characterize non-purinergic, non-nitrergic (NNNP) inhibitory NMT and the role of VIP in this response. Nerves were stimulated with electrical field stimulation (0.1-20 Hz, 4-60 s) and the associated changes in contractile and electrical activity measured in non-adrenergic, non-cholinergic conditions in the IAS of wild-type and VIP(-/-) mice. Electrical field stimulation gave rise to frequency-dependent relaxation and hyperpolarization that was blocked by tetrodotoxin. Responses during brief trains of stimuli (4 s) were mediated by purinergic and nitrergic NMT. During longer stimulus trains, an NNNP relaxation and hyperpolarization developed slowly and persisted for several minutes beyond the end of the stimulus train. The NNNP NMT was abolished by VIP6-28 (30 µm), absent in the VIP(-/-) mouse and mimicked by exogenous VIP (1-100 nm). Immunoreactivity for VIP was co-localized with neuronal nitric oxide synthase in varicose intramuscular fibres but was not detected in the VIP(-/-) mouse IAS. In conclusion, this study identified an ultraslow component of inhibitory NMT in the IAS mediated by VIP. In vivo, this pathway may be activated with larger rectal distensions, leading to a more prolonged period of anal relaxation.


Assuntos
Canal Anal/inervação , Relaxamento Muscular/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Nucleotídeos de Desoxiadenina/farmacologia , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Relaxamento Muscular/genética , Miócitos de Músculo Liso/fisiologia , Fibras Nervosas/fisiologia , Inibição Neural/genética , Junção Neuromuscular/efeitos dos fármacos , Nitroarginina/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Tetrodotoxina/farmacologia , Peptídeo Intestinal Vasoativo/genética
13.
Pflugers Arch ; 465(2): 283-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23149489

RESUMO

Smooth muscle caldesmon (h-CaD) is an actin- and myosin-binding protein that reversibly inhibits the actomyosin ATPase activity in vitro. To test the function of h-CaD in vivo, we eliminated its expression in mice. The h-CaD-null animals appeared normal and fertile, although the litter size was smaller. Tissues from the homozygotes lacked h-CaD and exhibited upregulation of the non-muscle isoform, l-CaD, in visceral, but not vascular tonic smooth muscles. While the Ca(2+) sensitivity of force generation of h-CaD-deficient smooth muscle remained largely unchanged, the kinetic behavior during relaxation in arteries was different. Both intact and permeabilized arterial smooth muscle tissues from the knockout animals relaxed more slowly than those of the wild type. Since this difference occurred after myosin dephosphorylation was complete, the kinetic effect most likely resulted from slower detachment of unphosphorylated crossbridges. Detailed analyses revealed that the apparently slower relaxation of h-CaD-null smooth muscle was due to an increase in the amplitude of a slower component of the biphasic tension decay. While the identity of this slower process has not been unequivocally determined, we propose it reflects a thin filament state that elicits fewer re-attached crossbridges. Our finding that h-CaD modulates the rate of smooth muscle relaxation clearly supports a role in the control of vascular tone.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Relaxamento Muscular/genética , Músculo Liso Vascular/metabolismo , Animais , Artérias/metabolismo , Artérias/patologia , Artérias/fisiopatologia , Proteínas de Ligação a Calmodulina/metabolismo , Homozigoto , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miosinas/metabolismo , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Regulação para Cima , Vasodilatação/genética
14.
Free Radic Biol Med ; 51(3): 619-25, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21605664

RESUMO

Emerging research suggests that antioxidant gene expression has the potential to suppress the development of gastroparesis. However, direct genetic evidence that definitively supports this concept is lacking. We used mice carrying a targeted disruption of Nfe2l2, the gene that encodes the transcription factor NRF2 and directs antioxidant Phase II gene expression, as well as mice with a targeted disruption of Gclm, the modifier subunit for glutamate-cysteine ligase, to test the hypothesis that defective antioxidant gene expression contributes to development of gastroparesis. Although expression of heme oxygenase-1 remained unchanged, expression of GCLC, GCLM, SOD1, and CAT was down-regulated in gastric tissue from Nrf2(-/-) mice compared to wild-type animals. Tetrahydrobiopterin oxidation was significantly elevated and nitrergic relaxation was impaired in Nrf2(-/-) mouse gastric tissue. In vitro studies showed a significant decrease in NO release in Nrf2(-/-) mouse gastric tissue. Nrf2(-/-) mice displayed delayed gastric emptying. The use of Gclm(-/-) mice demonstrated that the loss of glutamate-cysteine ligase function enhanced tetrahydrobiopterin oxidation while impairing nitrergic relaxation. These results provide genetic evidence that loss of antioxidant gene expression can contribute to the development of gastroparesis and suggest that NRF2 represents a potential therapeutic target.


Assuntos
Mucosa Gástrica/metabolismo , Gastroparesia/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios Nitrérgicos/patologia , Estômago/irrigação sanguínea , Animais , Antioxidantes/metabolismo , /metabolismo , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Esvaziamento Gástrico/genética , Gastroparesia/patologia , Gastroparesia/fisiopatologia , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Relaxamento Muscular/genética , Fator 2 Relacionado a NF-E2/genética , Estômago/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Sistema Vasomotor
15.
J Pineal Res ; 51(2): 163-71, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21486366

RESUMO

Duchenne muscular dystrophy (DMD) is a severe X-linked muscle-wasting disease caused by the absence of the cytoskeletal protein dystrophin. In addition to abnormal calcium handling, numerous studies point to a crucial role of oxidative stress in the pathogenesis of the disease. Considering the impressive results provided by antioxidants on dystrophic muscle structure and function, we investigated whether melatonin can protect the mdx(5Cv) mouse, an animal model for DMD. Male mdx(5Cv) mouse pups were treated with melatonin by daily intraperitoneal (i.p.) injection (30 mg/kg body weight) or by subcutaneous (s.c.) implant(s) (18 or 54 mg melatonin as Melovine® implants) from 17/18 to 28/29 days of age. Isometric force of the triceps surae was recorded at the end of the treatment. The i.p. treatment increased the phasic twitch tension of mdx(5Cv) mice. The maximal tetanic tension was ameliorated by 18 mg s.c. and 30 mg/kg i.p. treatments. Melatonin caused the dystrophic muscle to contract and relax faster. The force-frequency relationship of melatonin-treated dystrophic mice was shifted to the right. In accordance with improved muscle function, melatonin decreased plasma creatine kinase activity, a marker for muscle injury. Melatonin treatment increased total glutathione content and lowered the oxidized/reduced glutathione ratio, indicating a better redox status of the muscle. In light of the present investigation, the therapeutic potential of melatonin should be further considered for patients with DMD.


Assuntos
Antioxidantes/farmacologia , Contração Isométrica/efeitos dos fármacos , Melatonina/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Creatinina/sangue , Modelos Animais de Doenças , Glutationa/sangue , Humanos , Contração Isométrica/genética , Masculino , Camundongos , Camundongos Endogâmicos mdx , Relaxamento Muscular/genética , Força Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatologia , Oxirredução/efeitos dos fármacos
16.
Am J Physiol Heart Circ Physiol ; 300(2): H476-85, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131476

RESUMO

Large-conductance Ca2+-activated K+ (BK) channels are composed of pore-forming α-subunits and accessory ß1-subunits that modulate Ca2+ sensitivity. BK channels regulate arterial myogenic tone and renal Na+ clearance/K+ reabsorption. Previous studies using indirect or short-term blood pressure measurements found that BK channel ß1-subunit knockout (BK ß1-KO) mice were hypertensive. We evaluated 24-h mean arterial pressure (MAP) and heart rate in BK ß1-KO mice using radiotelemetry. BK ß1-KO mice did not have a higher 24-h average MAP when compared with wild-type (WT) mice, although MAP was ∼10 mmHg higher at night. The dose-dependent peak declines in MAP by nifedipine were only slightly larger in BK ß1-KO mice. In BK ß1-KO mice, giving 1% NaCl to mice to drink for 7 days caused a transient (5 days) elevation of MAP (∼5 mmHg); MAP returned to pre-saline levels by day 6. BK ß1-KO mesenteric arteries in vitro demonstrated diminished contractile responses to paxilline, increased reactivity to Bay K 8644 and norepinephrine (NE), and maintained relaxation to isoproterenol. Paxilline and Bay K 8644 did not constrict WT or BK ß1-KO mesenteric veins (MV). BK ß1-subunits are not expressed in MV. The results indicate that BK ß1-KO mice are not hypertensive on normal or high-salt intake. BK channel deficiency increases arterial reactivity to NE and L-type Ca2+ channel function in vitro, but the L-type Ca2+ channel modulation of MAP is not altered in BK ß1-KO mice. BK and L-type Ca(2+) channels do not modulate murine venous tone. It appears that selective loss of BK channel function in arteries only is not sufficient to cause sustained hypertension.


Assuntos
Hipertensão/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/fisiologia , Coração/anatomia & histologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Hipertensão/fisiopatologia , Óperon Lac/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , Veias Mesentéricas/efeitos dos fármacos , Veias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/genética , Contração Muscular/fisiologia , Relaxamento Muscular/genética , Relaxamento Muscular/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Nifedipino/farmacologia , Tamanho do Órgão/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Vasodilatação/genética , Vasodilatação/fisiologia
17.
Reprod Biol Endocrinol ; 8: 55, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20509935

RESUMO

BACKGROUND: Ghrelin is a 28-amino acid octanolyated peptide, synthesised primarily in the stomach. It stimulates growth hormone release, food intake and exhibits many other diverse effects. Our group have previously determined that ghrelin inhibited human contractility in vitro. The aim of this study therefore, was to investigate the expression of ghrelin, its receptor, the growth hormone secretagogue receptor type 1 (GHS-R1), ghrelin O-acyltransferase (GOAT) which catalyses ghrelin octanoylation, prohormone convertase 1/3 (PC1/3) responsible for pro-ghrelin processing, in human myometrium, during pregnancy prior to labour, during labour and in the non-pregnant state. Modulation of ghrelin and ghrelin receptor expression in cultured myometrial cells was also investigated. METHODS: mRNA and protein were isolated from human myometrium and the myometrial smooth muscle cell line hTERT-HM; and real-time fluorescence RT-PCR, western blotting and fluorescence microscopy performed. The effects of beta-Estradiol and bacterial lipopolysaccharide (LPS) on hTERT-HM gene expression were evaluated by western blotting. RESULTS: We have reported for the first time the expression and processing of ghrelin, GHS-R1, GOAT and PC1/3 expression in human myometrium, and also the down-regulation of ghrelin mRNA and protein expression during labour. Furthermore, GHS-R1 protein expression significantly decreased at labour. Myometrial GOAT expression significantly increased during term non-labouring pregnancy in comparison to both non-pregnant and labouring myometrium. Mature PC1/3 protein expression was significantly decreased at term pregnancy and labour in comparison to non-pregnant myometrium. Ghrelin, GHS-R1, GOAT and PC1/3 mRNA and protein expression was also detected in the hTERT-HM cells. Ghrelin protein expression decreased upon LPS treatment in these cells while beta-Estradiol treatment increased GHS-R1 expression. CONCLUSIONS: Ghrelin processing occurred in the human myometrium at term pregnancy and in the non-pregnant state. GOAT expression which increased during term non-labouring pregnancy demonstrating a similar expression pattern to prepro-ghrelin and GHS-R1, decreased at labour, signifying possible myometrial ghrelin acylation. Moreover, the presence of PC1/3 may contribute to pro-ghrelin processing. These results along with the previous in vitro data suggest that myometrially-produced and processed ghrelin plays a significant autocrine or paracrine role in the maintenance of relaxation in this tissue during pregnancy. Furthermore, the significant uterine modulators LPS and beta-Estradiol are involved in the regulation of ghrelin and ghrelin receptor expression respectively, in the human myometrium.


Assuntos
Grelina/genética , Grelina/metabolismo , Miométrio/metabolismo , Adulto , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/genética , Linhagem Celular Transformada , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/fisiologia , Humanos , Recém-Nascido , Trabalho de Parto/genética , Trabalho de Parto/metabolismo , Lipopolissacarídeos/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miométrio/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/genética , Gravidez/genética , Gravidez/metabolismo , Gravidez/fisiologia , Processamento de Proteína Pós-Traducional , Receptores de Grelina/genética , Receptores de Grelina/metabolismo
18.
J Pharmacol Exp Ther ; 330(1): 99-108, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19395654

RESUMO

A(2A) adenosine receptor (A(2A)AR) has been shown to suppress superoxide generation in leukocytes via the cAMP-protein kinase A (PKA) pathway. However, no study has yet explored the role of A(2A)AR in relation to NADPH oxidase in murine tracheas in vitro, which may lead to altered smooth muscle relaxation in asthma. Therefore, the present study evaluated the effects of A(2A)AR deficiency on the NADPH oxidase pathway in tracheas of A(2A) wild-type (WT) and A(2A) knockout (KO) mice. A(2A)WT mice were sensitized with ovalbumin (30 microg i.p.) on days 1 and 6, followed by 5% ovalbumin aerosol challenge on days 11, 12, and 13. A(2A)AR (gene and protein expression), cAMP, and phosphorylated PKA (p-PKA) levels were decreased in A(2A)WT sensitized mice compared with controls. A(2A)KO mice also showed decreased cAMP and p-PKA levels. A(2A)WT sensitized and A(2A)KO control mice had increased gene and protein expression of NADPH oxidase subunits (p47phox and gp91phox) compared with the controls. Tracheal relaxation to specific A(2A)AR agonist, 4-[2-[[6-amino-9-(N-ethyl-beta-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680), decreased in A(2A)WT sensitized mice compared with the controls, although it was absent in A(2A)KO mice. Pretreatment with NADPH oxidase inhibitors apocyanin/diphenyliodonium reversed the attenuated relaxation to CGS 21680 in A(2A)WT sensitized tracheas, whereas specific PKA inhibitor (9S,10S,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i] [1,6]benzodiazocine-10-carboxylic acid hexyl ester (KT 5720) blocked CGS 21680-induced relaxation. Tracheal reactive oxygen species (ROS) generation was also increased in A(2A)WT sensitized and A(2A)KO control mice compared with the controls. In conclusion, this study shows that A(2A)AR deficiency causes increased NADPH oxidase activation leading to decreased tracheal relaxation via altered cAMP-PKA signaling and ROS generation.


Assuntos
Asma/metabolismo , Relaxamento Muscular/fisiologia , NADPH Oxidases/fisiologia , Receptor A2A de Adenosina/deficiência , Transdução de Sinais/fisiologia , Traqueia/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina , Animais , Asma/enzimologia , Asma/fisiopatologia , Modelos Animais de Doenças , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/genética , Músculo Liso/efeitos dos fármacos , Músculo Liso/enzimologia , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Fenetilaminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptor A2A de Adenosina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Traqueia/enzimologia , Traqueia/fisiopatologia
19.
Am J Physiol Heart Circ Physiol ; 294(3): H1258-65, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18178722

RESUMO

Changes in dietary sodium intake are associated with changes in vascular volume and reactivity that may be mediated, in part, by alterations in endothelial nitric oxide synthase (eNOS) activity. Caveolin-1 (Cav-1), a transmembrane anchoring protein in the plasma membrane caveolae, binds eNOS and limits its translocation and activation. To test the hypothesis that endothelial Cav-1 participates in the dietary sodium-mediated effects on vascular function, we assessed vascular responses and nitric oxide (NO)-mediated mechanisms of vascular relaxation in Cav-1 knockout mice (Cav-1-/-) and wild-type control mice (WT; Cav-1+/+) placed on a high-salt (HS; 4% NaCl) or low-salt (LS; 0.08% NaCl) diet for 16 days. After the systolic blood pressure was measured, the thoracic aorta was isolated for measurement of vascular reactivity and NO production, and the heart was used for measurement of eNOS expression and/or activity. The blood pressure was elevated in HS mice treated with NG-nitro-l-arginine methyl ester and more so in Cav-1-/- than WT mice and was significantly reduced during the LS diet. Phenylephrine caused vascular contraction that was significantly reduced in Cav-1-/- (maximum 0.25 +/- 0.06 g/mg) compared with WT (0.75 +/- 0.22 g/mg) on the HS diet, and the differences were eliminated with the LS diet. Also, vascular contraction in response to membrane depolarization by high KCl (96 mM) was reduced in Cav-1-/- (0.27 +/- 0.05 g/mg) compared with WT mice (0.53 +/- 0.12 g/mg) on the HS diet, suggesting that the reduced vascular contraction is not limited to a particular receptor. Acetylcholine (10(-5) M) caused aortic relaxation in WT mice on HS (23.6 +/- 3.5%) and LS (23.7 +/- 5.5%) that was enhanced in Cav-1-/- HS (72.6 +/- 6.1%) and more so in Cav-1-/- LS mice (93.6 +/- 3.5%). RT-PCR analysis indicated increased eNOS mRNA expression in the aorta and heart, and Western blots indicated increased total eNOS and phosphorylated eNOS in the heart of Cav-1-/- compared with WT mice on the HS diet, and the genotypic differences were less apparent during the LS diet. Thus Cav-1 deficiency during the HS diet is associated with decreased vasoconstriction, increased vascular relaxation, and increased eNOS expression and activity, and these effects are altered during the LS diet. The data support the hypothesis that endothelial Cav-1, likely through an effect on eNOS activity, plays a prominent role in the regulation of vascular function during substantial changes in dietary sodium intake.


Assuntos
Caveolina 1/deficiência , Caveolina 1/genética , Músculo Liso Vascular/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Sódio na Dieta/farmacologia , Vasoconstrição/efeitos dos fármacos , Animais , Pressão Sanguínea/fisiologia , Western Blotting , Peso Corporal/efeitos dos fármacos , Dieta , Contração Isométrica/efeitos dos fármacos , Contração Isométrica/fisiologia , Masculino , Camundongos , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/genética , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico Sintase Tipo III/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
20.
J Biol Chem ; 283(4): 2156-66, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18032382

RESUMO

Restrictive cardiomyopathy (RCM) is a rare disorder characterized by impaired ventricular filling with decreased diastolic volume. We are reporting the functional effects of the first cardiac troponin T (CTnT) mutation linked to infantile RCM resulting from a de novo deletion mutation of glutamic acid 96. The mutation was introduced into adult and fetal isoforms of human cardiac TnT (HCTnT3-DeltaE96 and HCTnT1-DeltaE106, respectively) and studied with either cardiac troponin I (CTnI) or slow skeletal troponin I (SSTnI). Skinned cardiac fiber measurements showed a large leftward shift in the Ca(2+) sensitivity of force development with no differences in the maximal force. HCTnT1-DeltaE106 showed a significant increase in the activation of actomyosin ATPase with either CTnI or SSTnI, whereas HCTnT3-DeltaE96 was only able to increase the ATPase activity with CTnI. Both mutants showed an impaired ability to inhibit the ATPase activity. The capacity of the CTnI.CTnC and SSTnI.CTnC complexes to fully relax the fibers after TnT displacement was also compromised. Experiments performed using fetal troponin isoforms showed a less severe impact compared with the adult isoforms, which is consistent with the cardioprotective role of SSTnI and the rapid onset of RCM after birth following the isoform switch. These data indicate that troponin mutations related to RCM may have specific functional phenotypes, including large leftward shifts in the Ca(2+) sensitivity and impaired abilities to inhibit ATPase and to relax skinned fibers. All of this would account for and contribute to the severe diastolic dysfunction seen in RCM.


Assuntos
Sequência de Aminoácidos , Cálcio/metabolismo , Cardiomiopatia Restritiva/metabolismo , Cardiopatias Congênitas/metabolismo , Deleção de Sequência , Troponina T/metabolismo , Sequência de Aminoácidos/genética , Animais , Cálcio/química , Cardiomiopatia Restritiva/genética , Cardiopatias Congênitas/genética , Humanos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Relaxamento Muscular/genética , Miosinas/química , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos , Troponina T/química , Troponina T/genética , Disfunção Ventricular/genética , Disfunção Ventricular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...